

Convegno Antimicrobico-resistenza: cure e ambiente Firenze, 6 giugno 2018 SALONE DELLE ROBBIANE - Villa la Quiete - FORMAS (*via di Boldrone 2*)

Dr Bruno Viaggi

Dipartimento di Anestesia SOD NeuroAnestesia e Rianimazione CTO AOUC

GiViTI

Antibiotico resistenza in clinica

Servizio

Toscana

della

Sanitario

Dichiarazione su potenziali conflitti di interesse Consulenze, partecipazione advisory boards, speaker's bureau, contratti/ contributi di ricerca e di eventi studio: Abbott, Accelerate Diagnostics, Ada, Alifax, Angelini, Becton Dickinson, Bellco, Merck Sharp & Dohme, Pfizer, Thermofischer Scientific

- INCREASING COMPLEXITY OF PATIENTS (aging, co-morbidities, new treatments increasing at risk-population, devices)
- INCREASING COMPLEXITY OF BACTERIAL PATHOGENS: new multi drug resistant (MDR) and extremely drug resistant (XDR) pathogens
- INCREASING COMPLEXITY OF ANTIMICROBIAL CHEMOTHERAPY (revival of old antibiotics, new antibiotics, antimicrobial combinations, new PK/PD concepts)
- NOVEL DIAGNOSTIC TECHNOLOGIES IN CLINICAL MICROBIOLOGY (more rapid, more sensitive, more expensive, different informational content)

Infezioni all'ammissione e in degenza in ICU

Anno 2017

PATOGENI XDR incontrati con frequenza crescente nella pratica clinica

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

Yi-Yun Liu, BS[†], Yang Wang, PhD[†], Prof Timothy R Walsh, DSc, Ling-Xian Yi, BS, Rong Zhang, PhD, James Spencer, PhD, Yohei Doi, MD, Guobao Tian, PhD, Baolei Dong, BS, Xianhui Huang, PhD, Lin-Feng Yu, BS, Danxia Gu, PhD, Hongwei Ren, BS, Xiaojie Chen, MS, Luchao Lv, MS, Dandan He, MS, Hongwei Zhou, PhD, Prof Zisen Liang, MS, Prof Jian-Hua Liu, PhD

Lancet 2016;2:161-168

Correspondence

Dissemination of the mcr-1 colistin resistance gene

Maris S Arcilla[†], Jarne M van Hattem[†], Sebastien Matamoros, Damian C Melles, John Penders, Menno D de Jong, Constance Schultsz^{IMI} for the COMBAT consortium[‡]

Lancet Infect Dis 2016;16(2):147-149

mcr-1.2, a New *mcr* Variant Carried on a Transferable Plasmid from a Colistin-Resistant KPC Carbapenemase-Producing *Klebsiella pneumoniae* Strain of Sequence Type 512 Antimicrob Agents Chemother 2016; 60(9):5612-5615

Vincenzo Di Pilato,^a Fabio Arena,^b Carlo Tascini,^c Antonio Cannatelli,^b Lucia Henrici De Angelis,^b Simona Fortunato,^c Tommaso Giani,^b Francesco Menichetti,^c Gian Maria Rossolini^{b,d,e,f}

The Association between Empirical ATB and Mortality in Severe Infections Caused by Carba-R GN Bacteria: A Prospective Study

Doron YZ et al. Clin Infect Dis apr 2018

ROLE OF ECOLOGICAL DATA of your hospital and your ward

REVIEW

Antibiotic strategies in the era of multidrug resistance

George Karam¹, Jean Chastre², Mark H. Wilcox³ and Jean-Louis Vincent^{4*}

....Three important categories can influence antimicrobial choices: patient characteristics; risk factors for infection with specific pathogens; and severity of illness...

Critical Care 2016: 20:136

....We have to adapt to this threat by **REDUCING** unnecessary antibiotic prescribing, both qualitatively and quantitatively. We need to **OPTIMIZE** control measures to minimize the risk of spread of resistant bacteria, and we have to find **NOVEL WAYS** to detect pathogens early. These approaches will help prevent the spread of MDR pathogens and could enable us to direct last-line (and in some cases, narrow-spectrum) antibiotics more effectively to those patients who need them most, rather than the current "**BROAD-SPECTRUM IS BEST**" approaches. ..

K. pneumoniae ST512 KPC-3+ COL-R

Antibiotico	MIC mg/L (S/I/R)
Amoxi/Clav	>64 R
Pip/Tazo	>256 R
Ceftriaxone	>64 R
Ceftazidime	>64 R
Cefepime	>64 R
Ertapenem	>8 R
Imipenem	>16 R
Meropenem	>32 R
Fosfomicina	>128 R
Amikacina	>64 R
Gentamicina	>4 R
TMP/SXT	>320 R
Ciprofloxacina	>4 R
Tigeciclina	2
Colistina	>8 R

Stesso ceppo	Antibiotico	MIC mg/ (S/I/R)
	Amoxi/Clav	>64 R
Saggiato con	Pip/Tazo	>256 R
sistema	Ceftriaxone	>64 R
automatico	Ceftazidime	>64 R
	Cefepime	>64 R
	Ertapenem	>8 R
	Imipenem	>16 R
	Meropenem	64 R
	Fosfomicina	32 S
Saggiato con	Amikacina	>64 R
metodiche di	Gentamicina	2 S
riferimento: microdiluzione in brodo (AD	TMP/SXT	>320 R
	Ciprofloxacina	>4 R
per fosfomicina)	Tigeciclina	1 S
	Colistina	>8 R

Ceppo PDR

Ceppo MDR

Meropenem for treating KPC-producing Klebsiella pneumoniae BSIs: should we get to the PK/PD root of the paradox?

Del Bono V et al Virulence 2016

B.Viaggi - NeuroIntensive Care Unit - Department of Anesthesiology Careggi University Hospital

Meropenem for treating KPC-producing Klebsiella pneumoniae BSIs: should we get to the PK/PD root of the paradox?

Del Bono V et al Virulence 2016

On a theoretical basis, our results suggest a possible usefulness of MEM against resistant blood isolates with MICs up to 32 mg/L

Might real-time pharmacokinetic/pharmacodynamic optimisation of high-dose continuous-infusion meropenem improve clinical cure in infections caused by KPC-producing *Klebsiella pneumoniae*?

Pea F et al Int J Antimicrob Agents 2017; 49(2):

TDM-guided meropenem dosing may help in treating KPC-Kp with an MIC ≤ 64 mg/L.

Treatment Options for Carbapenem-Resistant Enterobacteriaceae Infections

Table 2. Potential Treatment Algorithm for Carbapenem-Resistant KPC-Producing Klebsiella pneumoniae*

Infection Source	Empiric Treatment: Core Drugs	Empiric Treatment: Possible Adjunct Drugs	Antimicrobial Susceptibility Directed Treatment Considerations
Bloodstream	 High-dose meropenem or doripenem And polymyxin B High-dose 	 Aminoglycoside Tigecycline Fosfomycin Rifampin Tigecycline 	 Meropenem/doripenem: MIC ≤16 µg/mL continue high-dose meropenem/ doripenem MIC >16 µg/mL consider alternative in vitro active antimicrobial^a
	meropenem or doripenemAnd polymyxin B	 Aminoglycoside Fosfomycin Rifampin 	 Polymyxin B/colistin: MIC ≤ 2 μg/mL continue polymyxin B/colistin^{b,c} MIC >2 μg/mL consider alternative in vitro active antimicrobial
Gastrointestinal/ biliary tract	 High-dose meropenem or doripenem And polymyxin B And high-dose 	FosfomycinRifampin	If both meropenem/doripenem MIC (>16 µg/mL) and polymyxin B/colistin MIC (>2 µg/mL), then consider a high-dose tigecycline-based regimen or a dual dual carbapenem-based regimen ^{d,e}
Urine	 High-dose meropenem or doripenem And fosfomycin^g Or aminoglycoside^g 	ColistinAminoglycoside	If pan-drug-resistant infection, select case-reports support dual carbapenem-based regimen ^e Tigecycline: • MIC ≤1 μg/mL consider tigecycline ^d • MIC >1 μg/mL consider alternative in vitro active antimicrobial
			 Fosfornycin^t: MIC ≤32 µg/mL consider fosfomycin MIC >32 µg/mL consider alternative in vitro active antimicrobial
			 Arnioglycoside: MIC ≤2 µg/mL (Gentamicin/ Tobramycin) or ≤4 µg/mL (Amikacin) consider aminoglycoside MIC >2 (Gentamicin/ Tobramycin) or >4 µg/mL (Amikacin) consider alternative in vitro active antimicrobial

Open Forum
 Infectious
 Diseases

Morrill HJ et al Open Forum Infect Dis 2015

Treatment Options for Carbapenem-Resistant Enterobacteriaceae Infections

Table 2. Potential Treatment Algorithm for Carbapenem-Resistant KPC-Producing Klebsiella pneumoniae*

Infection Sou	Irce Core Drugs	Empiric Treatment: Possible Adjunct Drugs	Antimicrobial Susce	ptibility Directed Treatment Considerat	tion
Bloodstream	tream High-dose meropenem or doripenem And polymyxin B And polymyxin B And polymyxin B And polymyxin B 		 Meropenem/doripen MIC ≤16 µg/mL of doripenem MIC >16 µg/mL of antimicrobial^a 	em: continue high-dose meropenem/ consider alternative in vitro active	
Gastrointe biliary tr	 High-dose Therapeutic option Enterobacteriaceae Enrico Maria Trecarichi & Ma The use of carbaper active drugs is likely i 	 Ingecycline s for carbapene infections rio Tumbarello nems in association neffective for CRE 	em-resistant 2017 with other isolates with	<image/> <section-header><section-header><text></text></section-header></section-header>	
	carbapenem Minim (MICs) >8 mg/l. The eff options for the treatm resistant Enterobac reported in vivo and in series have been reported are effective again	um Inhibitory Conc ectiveness of furthe ent of extensively of teriaceae infections witro, although fev orted. Novel antimic st CRE are urgently	entrations er therapeutic or pan-drug- s has been v cases/case crobials that / needed.		

B.Viaggi - NeuroIntensive Care Unit - Department of Anesthesiology Careggi University Hospital

Morrill HJ et al Open Forum Infect Dis 2015

Mortality Associated with **BSI** due to **KPC Coli R** with High-Level Meropenem Resistance: Importance of Combination Therapy without Colistin and Carbapenems

Marschal M et al. J Clin Microbiol 2017;55(7):2116

Mortality Associated with **BSI** due to **KPC Coli R** with High-Level Meropenem Resistance: Importance of Combination Therapy without Colistin and Carbapenems

Marschal M et al. J Clin Microbiol 2017;55(7):2116

• Mutazioni KPC

- D179Y (perdita di attività su carbapenemi, pip/taz e aztreonam)
- T243M (perdita di attività su carbapenemi e pip/taz)
- 165EL166 (perdita di attività su carbapenemi, pip/taz e aztreonam)
- V240G (ridotta attività su meropenem)

• Mutazioni in OmpK36

- T333N
- Inattivazione inserzionale (IS5)

• Aumentata espressione di KPC

- aumento del numero di copie plasmidiche

Haidar et al AAC 2017 Compain & Arthur AAC 2017 Shields et al AAC 2017 Humphries & Hamarajata AAC 2017 Shields et al OFID 2017 In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during **ceftazidime/avibactam** treatment

Gaibani P et al. J Antimicrob Chemother giu 2018

CONCLUSIONS: Our analysis indicates that mixed subpopulations of ceftazidime/avibactam-resistant KPC-Kp emerge after ceftazidime/avibactam treatment. The evolution of different subpopulations that are highly resistant to ceftazidime/ avibactam likely contributes to treatment failure, thereby highlighting the need for combination treatment strategies to limit selection of ceftazidime/avibactam-resistant KPC-Kp subpopulations.

Lateral flow immunochromatography assay (IFIA)

NG-TEST CARBA 5

САRВАБ a multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemases-producing Enterobacteriaceae

Boutal H t al J Antimicrob Chemother 2018;73:909-915

Overall, this assay reached 100% SENSITIVITY and 95.3% (retrospectively) to 100% (prospectively) SPECIFICITY.

БАRВАБ a multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemases-producing Enterobacteriaceae

Boutal H t al J Antimicrob Chemother 2018;73:909-915

CONCLUSIONS: Carba5 is efficient, rapid and easy to implement in the routine workflow of a clinical microbiology laboratory for confirmation of the five main carbapenemases encountered in Enterobacteriaceae.

Aminoglycoside Concentrations Required for Synergy with Carbapenems against **Pseudomonas aeruginosa**

Yadav R et al Antimicrob Agents Chemother dec 2017

In Vitro Comparison of **Ceftolozane-Tazobactam** to traditional Beta-Lactams and Ceftolozane-Tazobactam as an Alternative to Combination Antimicrobial Therapy for **Pseudomonas aeruginosa**

Goodlet KJ et al Antimicrob Agents Chemother dec 2017

Percent susceptibility of all *P. aeruginosa* isolates (**n 1,257**) to ceftolozane-tazobactam (pink bar) compared to that to B-lactams alone (light-blue bars) or in combination with ciprofloxacin (dark-blue bars) or tobramycin (green bars). Definitions: CAZ, ceftazidime; C/T, ceftolozane-tazobactam; FEP, cefepime; MEM, meropenem; TZP, piperacillin-tazobactam.

Changing the b-lactam partner: Ceftolozane-Tazobactam

<u>Activity vs:</u>

- Broad-spectrum β-lactamases and ESBLs of class A (TEM, SHV, CTX-M)
- AmpC-type B-lactamases
- Some class D oxacillinases (OXA-1)

No/poor activity vs:

- Carbapenemases (MBLs, KPC, OXA)
- OXA-type β-lactamases

Considerations for effect site PK to estimate drug exposure: **C of ATBs in the LUNG**

Rodvold KA et al Curr Opin in Pharmacology 2018

	Antibiotic	Dose	Penetration ratio (ELF-to-total plasma)	Penetration ratio (ELF-to-unbound plasma)
	ceftazidime/ avibactam	2 g q8h	31,3%	NR
	500	0.5 g q8h	34,9%	NR
		3 g q8h	32,4%	NR
		1 g q8h	32%	NR
	ceftolozane/ tazobactam	1 g 8h	48%	59%
e		0.5 g 8h	44 %	NR
	L			

Cite This: ACS Infect. Dis. XXXX, XXX, XXX–XXX

pubs.acs.org/journal/aidcbc

Game Changers: New β -Lactamase Inhibitor Combinations Targeting Antibiotic Resistance in Gram-Negative Bacteria

Karen Bush*[©]

Gaps still exist for the treatment of infections caused by multidrugresistant Acinetobacter spp, and metallo-β-lactamase-producing pathogens.

Comparison of Septic Shock due to MDR-AB or KPC-kp in ICU

Russo A et al. AAC giu 2018

We retrospectively analyzed 220 patients admitted to the ICU of a teaching hospital from November 2010 to December 2015 who developed septic shock due to MDR-AB or KPC-Kp infection

Comparison of Septic Shock due to MDR-AB or KPC-kp in ICU

Russo A et al. AAC giu 2018

Acinetobacter baumannii

Il sinergismo colistina+carbapenemico potrebbe derivare dalla perdita delle carbapenemasi poste al di sotto della membrana esterna bucata dalla colistina

B.Viaggi - NeuroIntensive Care Unit - Department of Anesthesiology Careggi University Hospital

Acinetobacter baumannii

Il sinergismo colistina+carbapenemico potrebbe derivare dalla perdita delle carbapenemasi poste al di sotto della membrana esterna bucata dalla colistina

β-Lactam

B.Viaggi - NeuroIntensive Care Unit - Department of Anesthesiology Careggi University Hospital

Rifampin plus **Colistin** time-kill curve vs. **MDR Ps. aeruginosa**

Tascini et al. J Chemother 2004;16:282-7

Penwell WF et al Antimicrob Agents Chemother 2015;59(3):1680-1689

Sulbactam inhibits **PBP1** and **PBP3** but not **PBP2** in A. baumannii

TABLE 1 Acylation rate constants for acylation of *A. baumannii* and *P. aeruginosa* PBP1a, PBP2, and PBP3 by various inhibitors

	$k_{\rm on}/K_i ({\rm M}^{-1}{\rm s}^{-1})$					
	A. baumannii			P. aeruginosa		
Compound	PBP1a	PBP2	PBP3	PBP1a	PBP2	PBP3.
Bocillin FL	5,500	13,000	32,000	9,270	1,030	18,600
Aztreonam	1,200	0.12	520	85	<5	296,000
Ceftazidime	5,000	1.2	780	3,760	<5	69,000
Mecillinam	1.6	6,200	<15	<7	1,500	NT^{a}
Meropenem	28,000	25,000	1,600	5,040	1,200	49,000
Sulbactam	8.8	0.34	17	5.9	0.12	1.7

Sulbactam preferentially inhibited **PBP1a** and **PBP3** over PBP2, as did aztreonam and ceftazidime, _ although the latter two compounds were notably more reactive. Mecillinam - reacted predominantly with PBP₂, whereas meropenem was quite reactive with all three PBPs tested but with lower potency against PBP3 than against PBP1a or - PBP₂, as described previously

Evaluation of two automated systems for **colistin** susceptibility testing of carbapenemresistant **Acinetobacter baumannii** clinical isolates

Vourli S et al. J Antimicrob Chemother 2017; 72: 2528–2530

Unavailability of old antibiotics threatens effective treatment for common bacterial infections

Tangden T et al Lancet march 2018

In addition to the insufficient pipeline of new antibiotics, the unsustainable production and supply of old antibiotics is becoming a serious global problem that limits the treatment options for common bacterial infections.

B.Viaggi - NeuroIntensive Care Unit - Department of Anesthesiology Careggi University Hospital

(H

	A A A A A A A A A A A A A A A A A A A	
aouc Universitaria Careggi	bruno.v	<u>íaggí@gmaíl.com</u>