



## • FIRENZE • 29 NOVEMBRE 2017

## MEDICINA E ASSISTENZA DI PRECISIONE

COSA CAMBIA NELL'EPIDEMIOLOGIA,
NELLA GESTIONE CLINICA E VALUTAZIONE OUTCOME

## Differenze genetiche e azioni dei farmaci

#### Romano Danesi

UO Farmacologia clinica e Farmacogenetica
Università di Pisa
Azienda Ospedaliero-Universitaria Pisana



# **Blood tests** in the Unit of Clinical Pharmacology and Pharmacogenetics

- DPD and UGT genotyping for prevention and diagnosis of fluoropyrimidine and irinotecan toxicity in colorectal cancer
- EGFR/KRAS mutations for prediction of response/resistance to treatment in NSCLC
- ALK translocation and mutations for prediction of resistance to treatment in NSCLC
- RAS and BRAF mutations for prediction of resistance to treatment in colorectal cancer and pancreas cancer
- AR-V7 splice variant for prediction of resistance to treatment in prostate cancer



## **Background**

Safety is an important concern too often neglected

 there are approximately 20.000 DPD-deficient
 patients, i.e., 3-5% of the approximately 450.000
 patients diagnosed annually with colorectal cancer
 in Europe (Deenen MJ, Meulendijks D, Ann Onc 2016)



## Characteristics of cohorts 1, 2 and 3

| Chaus stanistics                            | Cohort 1              | Cohort 2               | Cohort 3           |  |  |
|---------------------------------------------|-----------------------|------------------------|--------------------|--|--|
| Characteristics                             | N (%)                 | N (%)                  | N (%)              |  |  |
| Patients                                    | 200                   | 982                    | 272                |  |  |
| Gender (M/F)                                | 113/87<br>(56.5/43.5) | 392/590<br>(39.9/60.1) | 147/125<br>(54/46) |  |  |
| Age (years, median)                         | 58                    | 65                     | 59                 |  |  |
| Disease                                     |                       |                        |                    |  |  |
| Colorectal cancer                           | 150 (75)              | 740 (75,3)             | 130 (47,8)         |  |  |
| Gastric cancer                              | 40 (20)               | 195 (19,8)             | 12 (4,4)           |  |  |
| Breast cancer                               | 10 (5)                | 49 (5)                 | 130 (47,8)         |  |  |
| Treatment (1)                               |                       |                        |                    |  |  |
| FU-LV (De Gramont regimen)                  | 36 (18)               | 170 (17,3)             | 0 (0)              |  |  |
| Capecitabine                                | 40 (20)               | 210 (21,4)             | 80 (29,4)          |  |  |
| FOLFIRI                                     | 26 (13)               | 182 (18,5)             | 0 (0)              |  |  |
| FOLFOX-4                                    | 34 (17)               | 190 (19,3)             | 130 (47,8)         |  |  |
| FOLFOXIRI                                   | 10 (5)                | 54 (5,5)               | 0 (0)              |  |  |
| САРОХ                                       | 36 (18)               | 160 (16,3)             | 0 (0)              |  |  |
| TPF                                         | 8 (4)                 | 0 (0)                  | 0 (0)              |  |  |
| XELIRI                                      | 6 (3)                 | 8 (0,7)                | 0 (0)              |  |  |
| Epirubicin, oxaliplatin, capecitabine (EOX) | 4 (2)                 | 8 (0,8)                | 50 (18,4)          |  |  |



## **Toxicity in cohorts 1 and 2**

| ADRs                | Cohort 1 | Cohort 2 |  |
|---------------------|----------|----------|--|
| Gastrointestinal    | Grade ≥2 | Grade ≥2 |  |
| Nausea/Vomiting     | 21.5%    | 16%      |  |
| Diarrhea            | 51%      | 39.7%    |  |
| Stomatitis          | 19%      | 14%      |  |
| Dermatological      | Grade ≥2 | Grade ≥2 |  |
| Hand-foot syndrome  | 13%      | 9.3%     |  |
| Hematological       | Grade ≥3 | Grade ≥3 |  |
| Fever               | 4.5%     | 2.2%     |  |
| Leucopenia          | 16.5%    | 12.3%    |  |
| Neutropenia         | 21.5%    | 17.4%    |  |
| Febrile neutropenia | 7%       | 4.7%     |  |
| Anemia              | 3.5%     | 4.2%     |  |
| Thrombocytopenia    | 5%       | 5.8%     |  |

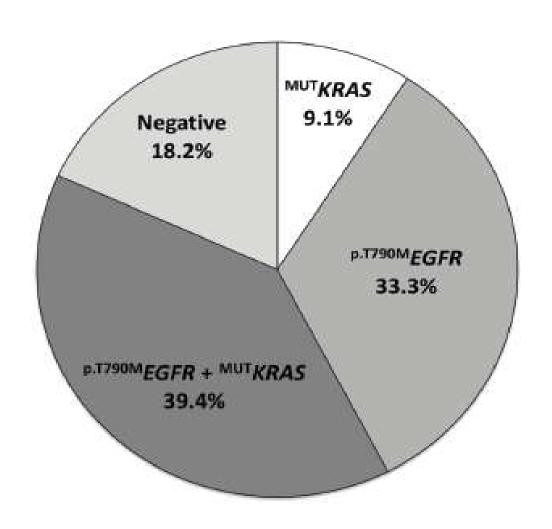


## Type and frequencies of *DPYD* genotypes in 1454 patients (C1: 200 pts; C2: 982 pts; C3: 272 pts)

|             | Wild-type (%) |             |             | Heterozygous (%) |             | Homozygous mut (%) |             |             |             |
|-------------|---------------|-------------|-------------|------------------|-------------|--------------------|-------------|-------------|-------------|
| Variant     | Cohort<br>1   | Cohort<br>2 | Cohort<br>3 | Cohort<br>1      | Cohort<br>2 | Cohort<br>3        | Cohort<br>1 | Cohort<br>2 | Cohort<br>3 |
| c.496A>G    | 79            | 76.2        | 82          | 20.2             | 22          | 16.5               | 0.8         | 1.8         | 1.5         |
| c.1601G>A   | 91.5          | 90.7        | 93.8        | 8.5              | 9.1         | 6.3                | 0           | 0.2         | 0           |
| c.1627A>G   | 68.6          | 67.4        | 60.3        | 28               | 29.1        | 34.2               | 3.4         | 3.5         | 5.5         |
| c.1896T>C   | 97.5          | 96.5        | 95.2        | 2.5              | 3.5         | 4                  | 0           | 0           | 0.7         |
| c.1905+1G>A | 95.8          | 93.8        | 100         | 3.4              | 6.1         | 0                  | 0.8         | 0.1         | 0           |
| c.2194G>A   | 81.3          | 80.2        | 88.2        | 15.3             | 18.4        | 10.7               | 3.4         | 1.3         | 1.1         |
| c.2846A>T   | 99.2          | 97.6        | 100         | 0.8              | 2.3         | 0                  | 0           | 0.1         | 0           |



## **Conclusions**


- PGx data are robust enough to support the introduction of DPD analysis in current practice
- The choice of DPYD variants should be made on the basis of functional data and population prevalence
- The utility of DPYD genotyping as pre-emptive screening of patients should be discussed between clinical oncologists and experts in pharmacogenetics
- The examination of more DPYD loci is helpful to improve the predictive value of PGx in fluoropyrimidine-based toxicities
- Avoiding risk of toxicity is a clinical commitment

### Contribution of KRAS mutations and c.2369C > T (p.T790M) EGFR to acquired resistance to EGFR-TKIs in EGFR mutant NSCLC: a study on circulating tumor DNA

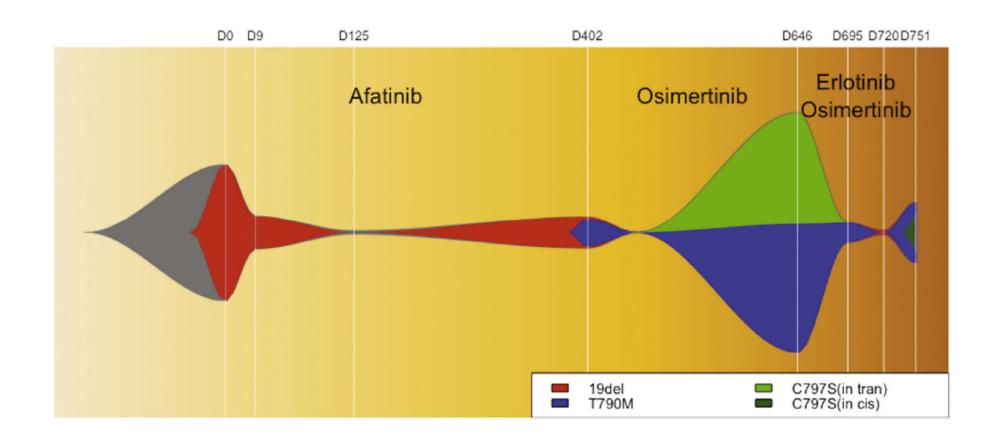
Marzia Del Re<sup>1</sup>, Marcello Tiseo<sup>2</sup>, Paola Bordi<sup>2</sup>, Armida D'Incecco<sup>3</sup>, Andrea Camerini<sup>4</sup>, Iacopo Petrini<sup>5</sup>, Maurizio Lucchesi<sup>6</sup>, Alessandro Inno<sup>7</sup>, Daniele Spada<sup>8</sup>, Enrico Vasile<sup>6</sup>, Valentina Citi<sup>1</sup>, Giorgio Malpeli<sup>9</sup>, Enrica Testa<sup>8</sup>, Stefania Gori<sup>7</sup>, Alfredo Falcone<sup>6</sup>, Domenico Amoroso<sup>4</sup>, Antonio Chella<sup>10</sup>, Federico Cappuzzo<sup>3</sup>, Andrea Ardizzoni<sup>2</sup>, Aldo Scarpa<sup>9</sup>, Romano Danesi<sup>1</sup>



### **Mechanisms of resistance in NSCLC**








Lung Adenocarcinoma Harboring *EGFR* T790M and *In Trans* C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance

Zhen Wang, MD, PhD,<sup>a</sup> Jin-Ji Yang, MD,<sup>a</sup> Jie Huang, MD, PhD,<sup>a</sup> Jun-Yi Ye, PhD,<sup>b</sup> Xu-Chao Zhang, PhD,<sup>a</sup> Hai-Yan Tu, MD,<sup>a</sup> Han Han-Zhang, PhD,<sup>b</sup> Yi-Long Wu, MD<sup>a,\*</sup>



## Sequential use of EGFR-TKI





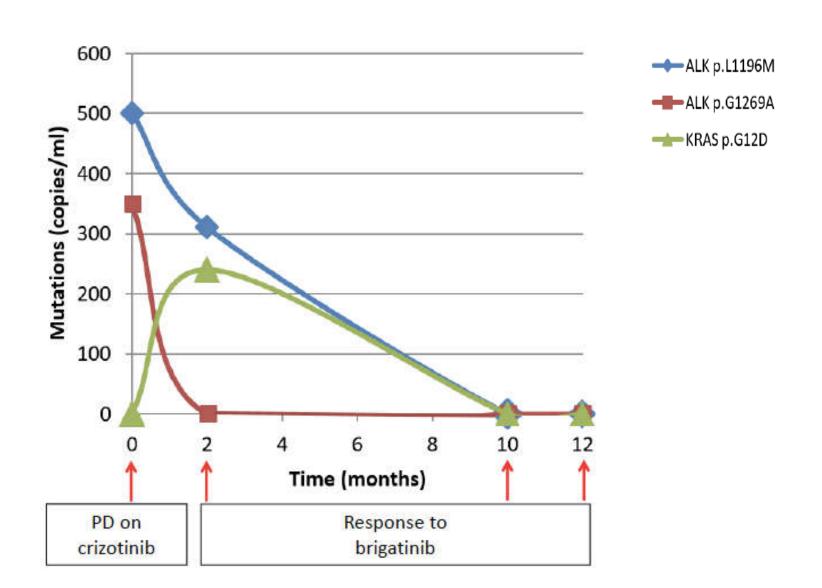


### Clinical Lung Cancer

Available online 18 May 2017

In Press, Corrected Proof




Original Study

Detection of ALK and KRAS Mutations in Circulating Tumor DNA of Patients With Advanced ALK-Positive NSCLC With Disease Progression During Crizotinib Treatment

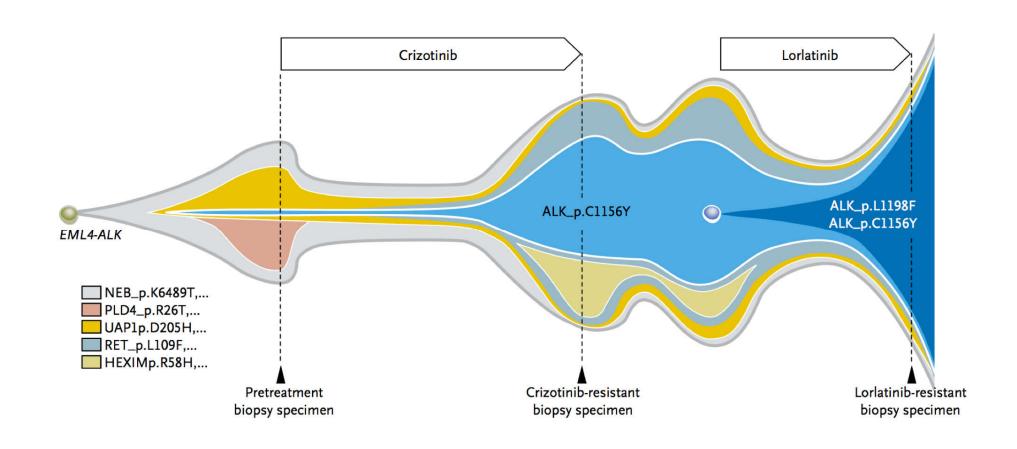
Paola Bordi <sup>1</sup>, Marcello Tiseo <sup>1</sup> <sup>∞</sup>, Eleonora Rofi <sup>2</sup>, Iacopo Petrini <sup>3</sup>, Giuliana Restante <sup>2</sup>, Romano Danesi <sup>2</sup>, Marzia Del Re <sup>2</sup>



## Monitoring or ALK mutations in plasma



#### The NEW ENGLAND JOURNAL of MEDICINE

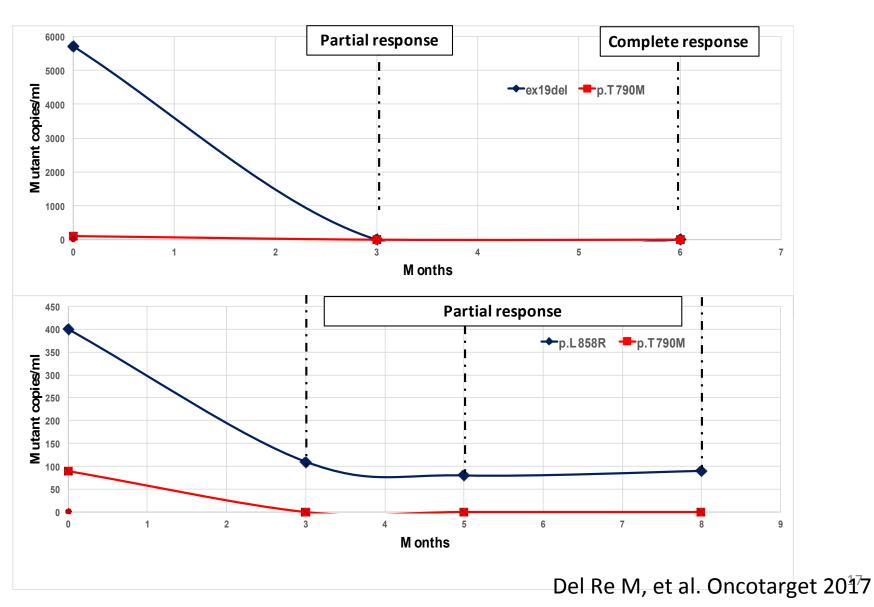

#### BRIEF REPORT

# Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F

Alice T. Shaw, M.D., Ph.D., Luc Friboulet, Ph.D., Ignaty Leshchiner, Ph.D., Justin F. Gainor, M.D., Simon Bergqvist, Ph.D., Alexei Brooun, Ph.D., Benjamin J. Burke, Ph.D., Ya-Li Deng, B.S., Wei Liu, M.A., Leila Dardaei, Ph.D., Rosa L. Frias, B.A., Kate R. Schultz, M.A., Jennifer Logan, M.S.N., Leonard P. James, M.D., Ph.D., Tod Smeal, Ph.D., Sergei Timofeevski, Ph.D., Ryohei Katayama, Ph.D., A. John Iafrate, M.D., Ph.D., Long Le, M.D., Michele McTigue, Ph.D., Gad Getz, Ph.D., Ted W. Johnson, Ph.D., and Jeffrey A. Engelman, M.D., Ph.D.



## Clonal evolution in ALK-mut NSCLC and drug sensitivity




# Patients with NSCLC may display a low ratio of p.T790M vs. activating EGFR mutations in plasma at disease progression: implications for personalised treatment

Marzia Del Re<sup>1,\*</sup>, Paola Bordi<sup>2,\*</sup>, Iacopo Petrini<sup>3,\*</sup>, Eleonora Rofi<sup>1</sup>, Francesca Mazzoni<sup>4</sup>, Lorenzo Belluomini<sup>5</sup>, Enrico Vasile<sup>3</sup>, Giuliana Restante<sup>1</sup>, Francesco Di Costanzo<sup>4</sup>, Alfredo Falcone<sup>3</sup>, Antonio Frassoldati<sup>5</sup>, Ron H.N. van Schaik<sup>6</sup>, Christi M.J. Steendam<sup>7</sup>, Antonio Chella<sup>8</sup>, Marcello Tiseo<sup>2</sup>, Riccardo Morganti<sup>9</sup> and Romano Danesi<sup>1</sup>



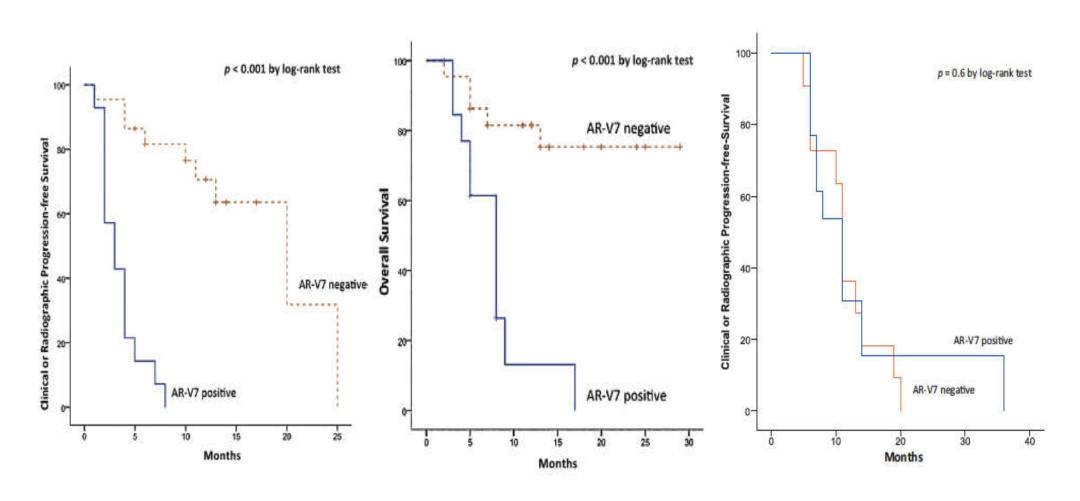
# EGFR mutations clearence during osimertinib treatment










#### From Lab to Clinic

## The Detection of Androgen Receptor Splice Variant 7 in Plasma-derived Exosomal RNA Strongly Predicts Resistance to Hormonal Therapy in Metastatic Prostate Cancer Patients

Marzia Del Re<sup>a,\*</sup>, Elisa Biasco<sup>b</sup>, Stefania Crucitta<sup>a</sup>, Lisa Derosa<sup>b,†</sup>, Eleonora Rofi<sup>a</sup>, Cinzia Orlandini<sup>b</sup>, Mario Miccoli<sup>c</sup>, Luca Galli<sup>b</sup>, Alfredo Falcone<sup>b</sup>, Guido W. Jenster<sup>d</sup>, Ron H. van Schaik<sup>e</sup>, Romano Danesi<sup>a</sup>



### **AR-V7 effect on survival**





#### OPEN

Received: 4 April 2017 Accepted: 6 July 2017

Published online: 11 August 2017

## Early changes in plasma DNA levels of mutant KRAS as a sensitive marker of response to chemotherapy in pancreatic cancer

Marzia Del Re<sup>1</sup>, Caterina Vivaldi<sup>2</sup>, Eleonora Rofi<sup>1</sup>, Enrico Vasile<sup>2</sup>, Mario Miccoli<sup>3</sup>, Chiara Caparello<sup>2</sup>, Paolo Davide d'Arienzo<sup>2</sup>, Lorenzo Fornaro<sup>2</sup>, Alfredo Falcone<sup>2</sup> & Romano Danesi<sup>1</sup>

### **KRAS** monitoring in PaCa

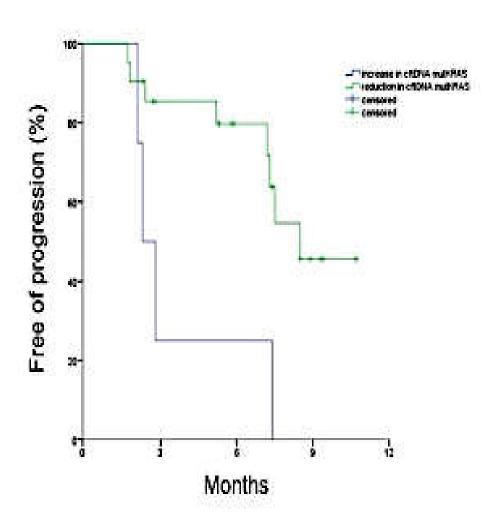
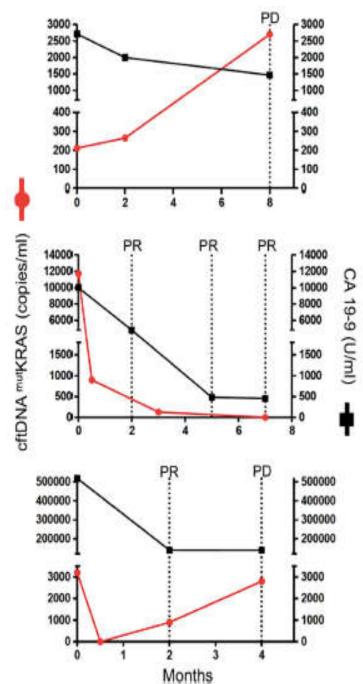




Figure 1. PFS according to early matkras cftDNA variation (increase vs. reduction).





## **Conclusions**

 cftDNA is a powerful tool to monitor tumor evolution and clonal heterogeneity induced by treatment

 Application of cftDNA monitoring to treatment selection may help improve appropriateness of therapeutic choices